Splitting Fields

نویسندگان

چکیده

Summary . In this article we further develop field theory in Mizar [1], [2]: prove existence and uniqueness of splitting fields. We define the a polynomial p ∈ F [ X ] as smallest extension , which splits into linear factors. From follows, that for E have = ( A ) where is set ’s roots. Splitting fields are unique, however, only up to isomorphisms; be more precise -isomorphims i.e. isomorphisms i with i| Id two -isomorphic using well-known technique [4], [3] extending from 1 → 2 b being algebraic over respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Splitting Fields

In the noncommutative case also a version of (1) can be proved; see for instance [S, Proposition A.33. In that case, in general, such an N is not finitely generated over K. What (2) means for the noncommutative case depends on how one defines the phrase “constructing by repeatedly adding zeros of p until p has a complete set of zeros.” The adding of zeros may be done by forming field coproducts...

متن کامل

Splitting Fields for E8-torsors

We show that every algebraic group of type E8 over any field becomes split over some field extension of degree dividing 26 · 32 · 5 = 2880. This improves a bound by Tits and, in fact, is optimal.

متن کامل

Constructing Splitting Fields of Polynomials over Local Fields

We present an algorithm that finds the splitting field of a polynomial over a local field. Our algorithm is an OM algorithm modified for this task.

متن کامل

Splitting quaternion algebras over quadratic number fields

We propose an algorithm for finding zero divisors in quaternion algebras over quadratic number fields, or equivalently, solving homogeneous quadratic equations in three variables over Q( √ d) where d is a square-free integer. The algorithm is deterministic and runs in polynomial time if one is allowed to call oracles for factoring integers and polynomials over finite fields.

متن کامل

Galois Theory, Splitting Fields, and Computer Algebra

We provide some algorithms for dynamically obtaining both a possible representation of the splitting field and the Galois group of a given separable polynomial from its universal decomposition algebra. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2021

ISSN: ['1898-9934', '1426-2630']

DOI: https://doi.org/10.2478/forma-2021-0013